Layerings
Layerings provide partial sums of the Hyper-Catalan series by different combinatorial levels.
- Vertex layering: constraint
sum m_k <= L
- Edge layering: constraint
sum (k-1) m_k <= L
- Face layering: constraint
1 + sum (k-1) m_k <= 1+L
APIs
geodepoly.layerings.vertex_layering(t: Mapping[int,complex], Vmax: int) -> list[complex]
geodepoly.layerings.edge_layering(t: Mapping[int,complex], Emax: int) -> list[complex]
geodepoly.layerings.face_layering(t: Mapping[int,complex], Fmax: int) -> list[complex]
Example
from geodepoly import vertex_layering, edge_layering, face_layering
vals = {2: 0.1, 3: 0.02}
SV = vertex_layering(vals, Vmax=5)
SE = edge_layering(vals, Emax=5)
SF = face_layering(vals, Fmax=5)
SV[L]
, SE[L]
, SF[L]
return the truncated sums at each layering level.
OEIS note
On the t2
-only slice, the vertex-layered series recovers the Catalan numbers as coefficients:
S(t2) = 1 + C1 t2 + C2 t2^2 + ...
with C_n
Catalan. Our tests confirm the first few by finite differences.